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Abstract D
The cumulative distribution of the number of secondary electrons in a

single-stage photomultiplier is calculated by numerically integrating the in-

version integral for its probability generating function along a suitably

chosen contour. A residue series applicable in certain cases is also pre-

sented. Saddlepoint approximations to the contour integral are described,

which are the more accurate, the greater the numbers of secondaries. Recur-

rent relations are developed for computing values of the distribution for

purposes of comparison. Computation of the Neyman Type-A distribution is

treated as a limiting case.
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I. Particle Multiplication

(a) Introduction

The particle-counting distributions with whose computation this paper is

concerned are exemplified by that of the output of a photomultiplier with a

single stage of multiplication. In this device primary photoelectrons, driven

out by incident light, are accelerated in an electric field and impinge on a

surface from which they eject secondary electrons. Let xj be the number of

secondary electrons ejected by the J-th primary electron. Then if k primary

electrons strike the surface during a fixed interval (0, T), the total number

of secondary electrons is

k
n - x(.1)

J.1

The number k of primary electrons is a random variable with probability gen-

erating function (p.g.f.)

f(z) k Ikzk, (1.2)

k-O

where % is the probability that k primary photoelectrons strike the surface.

Let the numbers x of secondary electrons be independent and identically dis-

tributed random variables with probabilities Pr (xj m) - and p.g.f.

( s)-, ( S ( 1 3g(z) (1.3)
m-0

Then the p.g.f. of the total number n of secondary electrons counted during

(0, T) is

h(z) = pnz - f(g(z)), (1.4)
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where pn is the probability that the total number of secondaries equals n [l].

lei Although the probability distribution {pn) may be of interest in comparing

theory with experiment, the cumulative probabilities

n-i

" P n - 1, 2,

m-O

Q -0o,. (1.5)

and their complements

+ - 2 ~ (1.6)

are generally more useful because they characterize the performance of devices

in which some action is triggered when the number n of particles exceeds a cer-

tain bias level. False-alarm and detection probabilities in optical- and

particle-detection systems and error probabilities in optical counications

are directly related to the cumulative distribution, and it is the computation

of this distribution that will be studied here. We call Q and Qn the "tail

probabilities." Their generating functions are

H(I) zh(z) (1.7)
TL=O

,, +( + n I- zh(z)

H::z) Qn -Z (1.8)

n-O

in terms of the p.g.f. h(z).

Multiplicative processes such'as this occur in many other contexts as well.

A review has recently been given by Teich [2], who mentions applications to

biology, medicine, cosmology, geophysics, and operations research. The prob-

+
abilities p n and the tail probabilities Qn and Q must usually be determined

2.......................................



by numerical methods, but the conventional ones run into difficulties when the

numbers n and their expected value E(n) are large. The number of steps needed

to compute p n generally increases with increasing n, as does the number of terms

to be sumed in evaluating %. Inaccuracy in the individual values of p intro-

duces large relative errors into the complementary cumulative probabilities

o$ = I-% when n much exceeds E(n).

In this paper we shall present methods for computing the tail probabilities

that become the more efficient, the greater the numbers n and E(n), and do not

require computing the individual probabilities pn and summing them. The appli-

cation to the output of a multiplicative process may be regarded as exempli-

fying methods that are worthy of consideration whenever the p.g.f h(z) of some

integer-valued random variable n is known in analytical form and the expected

+value E(n) and the numbers n for which Q or Q is wanted are large.
n n

The principal method involves suitably deforming the contour of integration

in the inversion integrals

-_ _ _ _ dz
- Jz-h(z) 2 (1.9)

+ f z'nh(z) dz (1.10)Qn e " Z - I1 wi

where C7 and C+ initially are closed contours enclosing the origin, but no

singularities of the m.g.f. h(z); C +encloses the point z - 1, C7 does not;

and the contours are traversed counterclockwise. The integration along the de-

formed contour is evaluated by the trapezoidal rule. The use of numerical con-

tour integration to evaluate cumulative distributions of continuous random vari-

ables was treated in [3], and a comment on that paper described its application

to cumulative distributions of integer-valued random variables f4J.

3



Besides evaluating the tail probabilities % and Qn by numerical contour

integration, we shall show how to approximate them by isolating the contribu-

tions to the integrals in (1.9) and (1.10) at the saddlepoints of the integrand.

Daniels [5] first demonstrated saddlepoint approximations to probability dis-

tributions (pnI of integer-valued random variables. Related to this method is

the use of tilted distributions, utilized by Blackwell and Hodges [6], Bahadur

and Rao [7], Petrov [8], and Barndorff-Nielsen and Cox [9] to calculate cumu-

lative distributions of sums of independent random variables; see also Van Trees

(10]. A different saddle-point approximation, which avoids the use of the

error-function integral, was utilized for tail probabilities of integer-valued

random variables in [11]. In the present problem the contributions of saddle-

points above and below the real axis in the z-plane must be included in addi-

tion to that of the principal one lying on the real axis. We shall evaluate

the latter by means of a uniform asymptotic expansion [12]; the contributions-

of the off-axis saddlepoints are evaluated by the method of [11].

The contour-integral method and its approximations apply whenever the p.g.f.

h(z) of the output distribution is known in analytical form, but for the sake

of definiteness we shall restrict our discussion to distributions arising when

the light ejecting the primary electrons is incoherent light with various simple

spectral densities, and the number of secondary electrons ejected by each pri-

sary electron is governed by a Poisson distribution. A by-product of our study

is an illustration of how the output distributibn depends on the product of the

bandwidth W of the incident light and the duration T of the counting interval.

We first review methods of computing the probabilities pn that follow most

directly from (1.4) and are useful when the numbers n and E(n) are small, in

order to generate accurate values of those probabilities for comparison with

the contour-integration and other methods to be presented later.

. . ."
*. .!-*. * . . *
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(b) Ceneral Multiplicative Processes

From the p.g.f. h(z) the probabilities pn can be determined by

Po h(D),

. -- . f(g(z)) , n>O. (1.11)
n1 n n1 n n .(.1dz z=O dz z=O

By means of a formula based on Bell polynomials [10, p.1998], the probability

P. can be written as

n
Pnf k Rk11,k, -'n k ',1(1.12)

k-i

where

.1 k
k d k  l (s) (1.13)

f~~~k - f(z) , ,(O=po

-4 . dz zg(0)

and the Hn,k are determined by the recurrent relation

HI - D(s)
Sn+l,l -n+l'

(l H(1.14)

.4.

in terms of the distribution of the number of secondaries per primary photo-

electron. In particular

= Inl.(1.15)
U' In!

(c) Poisson-Distributed Secondaries

When, as we assume henceforth, the distribution of the number of secondaries

per primary electron has the Poisson form with mean G, which is called the gain,

-(s). Cn e- /n!, (1.16)

the probabilities P. that the total number of secondaries equals n form what

*1

J. .. ., . ,- . . , . i . . . ' ." " " " " " "
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is called a compound or generalized Poisson distribution [13] and are given by

Pn =  fl(k)ne
- kG/n!. (1.17)

k-0

The p.g.f. of the output distribution is now

h(z) - f(e C(z-l) (1.18)

It follows from Problem 26, p. 47 of Riordan's book (14] that

Hn,k G n S(n, k) e-kG (1.19)

in terms of the modified Stirling numbers of the second kind, S(n, k), which

obey the recurrent relation

9 I, ) - 1, Rk j- 0, k > n,

S(n+l, k) - [§(n, k-l)+kS(n, k)]/(n+l). (1.20)

In terms of the ordinary Stirling numbers of the second kind these are de-

fined by

S(n, k) - S(n, k)/n! (1.21)

and are introduced in order to avoid overflow in machine computation. Recur-

rent relations for S(n, k) are given in [14]. In particular

(n, 1) - 1(n, n) - 1/nI. (1.22)

As a result the probabilities sought are

PO 0 f(e-)"

Pn " n fk1(n, k)e -kG, n > 0, (1.23)

k-l

in which the derivatives fk of the p.g.f. f-(z) of the primary distribution are

evaluated at x - e- . This enables computation of the probabilities pn by a

strictly finite procedure in contrast to the infinite series in (1.17).

"4
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When the number n is large, however, the great number of iterated com-

putations required by (1.21-.23) may introduce substantial errors due to

rounding off. Greater accuracy can be achieved for large n by utilizing (1.17),

replacing n! by Stirling's approximation [15] and writing it as

p - [2w(n+l)] 4[B(n+l)]- CO ( I),n+lkG (1.24)

k-l

where

B(z) - exp (1~ 1 + O(z 5) (1.25)B~z = xp12z 360z 3

The suunation was halted when the terms in (1.24) became insignificant.

C,7
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II. Primaries Ejected by Incoherent Light

(a) Arbitrary Spectral Density

The incident light is assumed to be quasimonochromatic, linearly polarized,

incoherent light with a spectral density O(w); the angular frequency w is mea-

sured from the central angular frequency of the light. Because the field of

the light is a Gaussian random process, the probability generating function

of the distribution of primary photoelectrons is

,f(z) .J7J[1-N r(z-1) 1- , (2.1)
pr

r-l

where N is the mean number of primary electrons [16]. The X are the eigen-
p r

values of the integral equation-°
X*t O(t-s)p(s) ds, (2.2)

whose kernel

O(T) f 0(W) e:!  dw/2w (2.3)

is the temporal coherence function of the light field and the Fourier trans-

form of the spectral density 0(w); (0, T) is the interval during which elec-

trons are counted. We assume that the spectral density t(w) is normalized

so that

a 1, (2.4)

which requires that

TO(o) - T ,(W) 6dw T - 1. (2.5)
4.

* S B



In terms of the Fredholm determinant

D(u) -1 (l+Aru) (2.6)

r-l

associated with the integral equation (2.2), the p.g.f. is

f(z) - [D(N p(Il-z))l 1 [1-.X rN (z -l ) ] 1  (2.7)
r=1

By introducing the residue expansion of [D(u)] we can write this p.g.f. as

f(z) " r

r''-11 )  lr '

vr= +r , 'u D/u 28pr

Vr 1+ N IN D'(u) -dD/du. (2.8)

Because (1.23) is linear in the derivatives fk' the probabilities pn can

be considered as a weighted sum of probabilities arising from the individual

terms of (2.8),

Pn =  jarPr,n' (2.9)

r-l

with

n
nr k

Pr,n -P ron k!(n, k) k n > 0,

k-l

ve 1-v
r r

r 1v e-G (2.10)

11
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Writing

n

~r,n inr,0 1: (r)
k-l

T(r) n k (.1Tnrk= G k! S(n, k)Er (2.11)

and using the recurrent relation (1.20) for the modified Stirling numbers, we

find a recurrent relation for the terms of (2.11),

T(r) . k (r) T(r) T(r)

n+l,k n (l r n,k-I n,k 1,1 r"

The sum in (2.9) is stopped when the terms decrease to the point of insigni-

ficance.

(b) Lorentz Spectral Density

For incident light with a Lorentz spectral density, whose normalized form

is

(- 2 + U2 (2.13)

the p.g.f. f(z) of the primary distribution is given by [17]

f (z) - emcs H+ ihw-

w2 - 2 +2Nm(1-z), m - 1T. (2.14)

We denote the square bracket by M(z) and write it in terms of modified spher-

ical Bessel functions in (w) obeying the recurrent relation

i ( )  i (w) - 2n + n(w) (2.15)
n+1 -l n

with

il(W) - cosh w i0(w) sinh v

whereupon
2

H(z) - . ) + w 1 + (w) + X- i_2 (w). (2.16)

10
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Then following B~dard [18] we use

1()- Nm a~ w( p(w) + -X2 1 (~z w ) w) + n-i2( ]

- (-)nM (z), (2.17)n

which defines Mn(z), in Leibnitz's formula

n-d n n ; dn-r
[f(z)M(z)] = f d M(z) = 0 (2.18)dn  r r dn-r

r-O dz

to determine a recurrent relation for the derivatives f of f(z),

n
f n/ n-i

r=O

z - e -  f 0  f (z), w [M +2N rm(l-z)]*. (2.19)

The probability pn of counting n secondary electrons during (0, T) when
the incident light has a Lorentz spectral density is then calculated by sub-

stituting from (2.19) into (1.23). Alternatively, one can calculate the prob-

abilities H k in (1.17) and (1.24) by Bedard's method [18], which corresponds

to taking z - 0 in (2.14-.19).

(c) Negative Binomial Primary Distribution

The primary electron distribution can often be closely approximated by

the negative binomial distribution

()k k N
N +M' k 0, 1, 2,
p

(M) - M(M+1)... (M+k-1) - (M+k) (2.20)k r(M)

in which the number M of degrees of freedom is given by

11



iJ
M - T2 /1 (T-II)I(T)I2dT (2.21)

-fT

In terms of the temporal coherence function O(T) of the incident light [16, 19].

For the Lorentz spectral density in (2.13)

O(T) - T-1 e-ITj (2.22)

and

2 - 2m
M 2m /(2m- 1 + e-), m = liT; (2.23)

1 as m 0, M m as m-. For M >> 1,

-- M "-0l(o)12  1
O/(T)I dT. (2.24)

and M roughly equals the time-bandwidth product WT, where W is the equivalent

bandwidth {st.o
W = (w) dw/2 (W)]2 dw/2"r (2.25)

of the light. The p.g.f. of this negative binomial distribution is

f(z) - (2.26)

and the derivatives of the p.g.f. f(z) in (1.23) are

f =  (M)kf 0 (k f 0 ( - ) (2.2 )k k 0 e ve - G)

Again using the recurrent relation (1.20) with (1.23) we can write the prob-

ability pn of n secondaries as

n

Pn P0 F Tn,k' P0  
= f0 ' (2.28)

k-l

12

:%



.. ... .AT.7

in which the coefficients Tn,k obey the recurrent relation

CT C ----- [(M+k- l)CT +kT],

n+l,k n+1 nk-l kk

-G
C ve TII m MGE. (2.29)

1 -ye 1e

(d) The Neyman Type-A Distribution

When we pass to the limit M 0, keeping the mean number N of primary elec-p

trons fixed, the distribution of primary electrons turns into the Poisson dis-

tribution,

-Nkif. Hk ' Npkexp (-N p)/k!, (2.30)

for which the p.g.f. is

f(z) = exp [N (z- 1)]; (2.31)
p

and the distribution of secondaries becomes by (1.18) the Neyman Type-A dis-

tribution (2], whose p.g.f. is

h(z)u- exp [Np(e -G(z) .M (2.32)

and for which the probabilities are most simply computed by Neyman's recurrent

relation [20]

Ne_ G r

Pk+l E + 1 rl Pk-r' (2.33)
r-O

or, for n >> 1, by (1.24-.25) and (2.30).

In order to illustrate the transition to the Neyman Type-A distribution

wiih increasing values of M, we have plotted the probabilities pn' n > 0, in

Figs. 1 and 2 for both the negative-binomial primary distribution (solid lines)

and the distribution arising from light with a Lorentz spectral density (dashed

lines), the equivalent value of m having been determined by solving (2.23).

13
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Where both distributions are not shown, their graphs fell too close to be dis-

tinguished. The curves marked '~' represent the Neyman Type-A distribution.

In Fig. 1, N - 2, G - 6; in Fig. 2, N - 6, G - 2. The long tails of the
p p

negative-binomial distribution for small values of M carry over to the distri-

bution of the number n of secondary electrons. The negative-binomial distribu-

tion is seen, furthermore, to yield a close approximation to the distribution

arising from light with a Lorentz spectral density over the entire range

1 S M < -, the two coinciding at the extremes M = 1 and M = =, except that the

latter drops off to zero slightly less rapidly than the former.

The probabilities pn having been computed by these methods, the cumulative
n+

probability is computed by the summation in (1.5), and its complement Q+
n

is determined from 1-Q . When the numbers n are large, however, Qn is close

to 1, and round-off errors corrupting the probabilities pn introduce large rela-

tive errors into the tail probability Q These methods furthermore require-

storage of more and more numbers and entail more and more additions and multipli-

t* cations as n and E(n) increase. We-therefore turn to methods that enable computa-

tion of the tail probabilities Q and Q directly and are the more efficacious,
Qn- n

the larger the mean number N of primaries and the gain G in the multiplicativeP

process.

-p1

* A. . . . . . .
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III. The Method of Residues

By (1.10), (1.18), and (2.8) the right-hand tail probability Qn is

+ Ct q (3.1)

r-1

where

q G P = z-- -dz (3.2)
r~~n E j+ z-1 7

rn-n C

with

hr (z) - (1- vr)/(1- vreG(Z-
1)), (3.3)

the contour C enclosing the origin and the point z 1, but none of the poles

of hr (z), which lie at the points

(r) . vr1 ( + 2 kri) (3.4)
kr

" for all integers k, -- < k <

As shown in Appendix A, we can expand the contour C+ into a rectangle at

Infinity, provided that we also enclose each pole C (r ) by a small circle tra-

versed clockwise. The integral around the rectangle vanishes, and we are left

44 with the results of applying the residue theorem to the integrals around each

.* pole, whereupon

Rca Z. (r).

(~n"': ( r ) - n

-. G71(1-) Ld iT

(r) CO (r)k=-JSG-l(l-Vr) r- + 2 Re~k1{k r -  (3.5)

.41
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It is furthermore shown in Appendix A that the error R K incurred by stopping the

summation in (3.5) at k - K is bounded by

R : ; 7-(1 -Vr)Y n  (G+1)] n. (3.6)

.. r= - r- !/r(n/2). (3.7)

The factors Yn remain bounded and are of order n-1 for n >> 1. When n is large,

only a few terms contribute significantly to the sum in (3.5), and convergence

is rapid.

For the Lorentz spectral density in (2.13), to which we have applied this

method, the eigenvalues X are given by
r

Xr= 2m U-lT, (3.8)r 2+m

where the cr are the solutions of the transcendental equation

cot cr - (c -m 2)/2mc , r - 1, 2,

which can also be written

cr tan (crl2) = m, r odd

C r cot (Cr/2) - -m, r even (3.9)

The quantity cr lies between (r-l)n and rw, and with cr (r-l)r+c r, we find

for r >> m/r.

ft hl2/r. (3.10)

The coefficients a in (2.8), (2.9), and (3.1) are given by [21]

,4-

-m e sin c in c I

which after some algebra can be reduced to

r  (-I)r - em Xr(2-mXr)/(l+r). (3.11)

16
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For large values of r, by (3.11) and (3.8)

m2.2Ic I ft 4me'/r W 2
, (3.12)r -2

which decreases in proportion to r as r 4 -. This rapid decrease does not

set in, however, until r exceeds m/IT. When m >> 1, the coefficients a forr

r < m/W are large in absolute value; they always alternate in sign. When the

number u is of the order of E(n) or larger, the convergence of (3.1) is acceler-
-n

ated by the rapid decrease of thi terms in (3.5) with increasing r, but

for n << E(n) many terms of the series must be taken when m >> 1. Because the

terms of (3.1) are of decreasing magnitude and alternate in sign' the error is

bounded by the last term included in the sum.

In Table I we compare the results of using (3.1) and (3.5) with those ob-

tained by summing the probabilities calculated by (1.23) with (2.19) in double

precision. The column headed "last increment" lists the last term added into

the sum in (3.1). We took m - 4.4365821, corresponding to H - 5 in (2.23), and

forty terms of (3.1) were summed. For these we found

40

Q = Or - 1.046101

r-l

instead of 1. It is seen that the error incurred by the residue series decreases

with increasing n, and the faster, the smaller the gain G.

When the p.g.f. f(z) of the primary electrons can be approximated as in

(2.26) for integral values of H, the p.g.f.

h"- v (3.13)

possesses a vertical row of poles of order H at the points

S1+C1 (lnv- +2ki), < C k < . (3.14)

17

m• ,~~~~. ., . . .... .. .. .-.... ... ..-. ..-.- .-... . .. -. - .-.... . . .-..... ',.-. . -. .,..-. - .- -
-.- - . ., , . .-/* ** .-. * ~5 .. - . .. , " ..-- ',, .. :,...L. . ' .. . -....... ... -....



-7 77 T7 -- .. .- , • ; v . ,. -. - - .. ..-71
j7'-

Expanding the contour of integration across this row of poles and applying the

residue theorem as before yields for the complementary cumulative probability

dz ["(,- 1zIt- znh • z"l (3.15)

It is shown in Appendix B that this can be written as
_ ~ _n

-"(l)l a - H -  (3.16)

"urk

k--u J=0

with

a Y -() ) i (3.17)

s-O

(n) - n(n+l)... (n+s-), (3.18)

* - and the coefficients 0jM are tabulated in Table II. The manner ofcaultn

jk

these coefficients is given in Appendix B. Again the symmetry of the poles about

* the real axis permits carrying the summaation from k = 0 to ,0 and replacing t'-

terms with k > 0 by twice their real parts.

Table III compares the results of this residue series with the exact prob-

abilities for H - 5 and the same parameters as in Table I. The column labeled

'Mum' lists the maximum value of k in eq. (3.16), in wehich the summation was

stopped when the ratio of the absolute value of the last term to that of the

tween the exact values, computed by (2.28-.29), and those computed by (3.16).

As is to be expected from (3.6), the number of terms to be summed decreases with

increasing n. The column of Tabie III headed "Single term" lists the contribution

of the pole 0 on the real axis alone: for n greater than E(n) it is seen to

provide an accurate approximation to the right-hand tail probability -+.

18
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IV. Numerical Contour Integration

The method of residues in Sec. III cannot be applied to the Neyman Type-A

distribution, whose p.g.f. has no poles, nor to the distribution of secondaries
.- ;

.- arising from primaries with a negative-binomial distribution for a nonintegral

value of M, for which the singularities are branch points. For light with a

spectral density such as the Lorentz in (2.13), furthermore, (3.1) requires a

n +
great many terms when WT >> I and n << E(n) in order to determine Q = -Q+

with usefully high relative accuracy. We therefore resort to computing the tail

probabilities Q and by evaluating the contour integrals in (1.9) and (1.10)

numerically.

For the sake of efficiency one would like to integrate along that contour

C on which the magnitude of the integrand decreases as rapidly as possible from

its maximum value, which occurs for z real and positive. Such a path is known

as the path of steepest descent [22]. With the integrand written in the form

exp[Y(z)] - ±z-nh(z)/(z- 1), (4.1)

the imaginary part ImTf(z) of the "phase" '(z) is constant along this path. The

path of steepest descent furthermore passes through the saddlepoints of the in-

tegrand, which are the points at which

dY dIn h(z) n 1
dz dz ih z -0y- 0. (4.2)

If one plots the magnitude of the integrand exp[Y(x)] for values of z - x

on the positive real axis, one finds that it is. a convex function with one min-

Im'm at a point xo in O < x < 1 and another at a point x 0  in 1 < x <. 0 , where

*O Is the leftmost singularity of h(z) on the real axis. These points z - x±

are roots of (4.2) and the principal saddlepoints of the integrand. When the

contour of integration passes vertically through z - x0  or:z- xo, the magni-

tude of the integrand, maximum at the saddlepoint, decreases most rapidly on

19
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either side.

Figure 3 exhibits typical paths of steepest descent for.(1.9) and (1.10)

when these are used to calculate the Neyman Type-A distribution, whose p.g.f.

h(z) is given in (2.32). They are drawn for N - G - 10. Only the curves in
p

the upper half-plane are illustrated; the portions in the lower half-plane are

their mirror images. The left-hand set of curves refers to Qn for n - 75, the

right-hand set to for n - 150. Small circles indicate the saddlepoints.

The paths of steepest descent go off to infinity along asymptotes at values of

y I nm z equal to odd multiples of R/G.

Utilizing the path of steepest descent would require computing a number of

saddlepoints z0 by solving (4.2) and then tracing the branch of the path of

steepest descent passing through each, a cumbersome procedure. We therefore

instead chose as our contour of integration a vertical straight line passing

through the saddlepoint x for and through for This line passes0 Qn 0 Q
" close to the saddlepoints of the integrand lying above and below the real axis.

(The advantages of integrating along a path passing through or near a string of

saddlepoints were pointed out by Lugannani and Rice [23].)

The saddlepoints x0 and x on the real axis can most expeditiously be

found by solving (4.2) by Newton's method, starting with an initial trial value

just to the left of z - I for x and just to the right of z I for x0 ; at

each stage one replaces the trial value x0I by
0

x 4 T0 , (x0, )/V,( 0') (4.3)

withy.' the first, T" the second derivative of the phase Y(x); see (4.1). Along

a vertical contour through x0 or x0  the magnitude of the integrand in (1.9) or

(1.10) decreases most rapidly. For n < E(n) it is most expeditious to evaluate

in (1.9) by deforming the contour into a straight line through the left-hand

20



saddlepoint x0 ; for n > E(n) one evaluates Qn by (1.10) and deforms the con-

tour into a straight line through the right-hand saddlepoint x0 .

For reasons discussed in [24] the trapezoidal rule is recommended for in-

finite integrals of analytic functions. For z x0 +iy in the neighborhood of

the saddlepoint x0  x0° or x" the integrand has approximately a Gaussian de-

pendence on y with a width of the order of ["(x0)]- . Using the trapezoidal

rule in the form

+ (A)expT(x)+Re
E  exp[P(xo+ikA)]1, (4.4)

k-l

it is convenient initially to take the step-size A as [Y"(x O)] and to repeat

the integration with values of A successively halved until the value of the in-

tegral ceases changing significantly [3, 24].

After the initial descent, the integrand in (1.9) and (1.10) may oscillate.

*:: The magnitude of these oscillations is measured by exp [Re'(z)], and the integra-

tion should continue until this magnitude is sufficiently small. The truncation

error C incurred by halting the integration at a particular value yo of y is

bounded by

Cexp'(x 0 
+ iy) dy/fr IT max Ih(x +iy)If r dy

' YO YO

" -max lh(x o0 + iy)l 0 +y)-2 dy/y

YO

-lmax bh(xo 0 f.0  2._02 dr

19 -1 r 0-(n-2) yO2 max jh(x 0 + iy) [/(n - 2), (4.5)
Y
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where r0  2 + 2

For the Neyman Type-A distribution,

max Ih(x 0 +y)i = exp [Np(e (l)-1)

Y

and for that arising from a negative-binomial primary distribution, by (2.26)

and (1.18).

max Ih(x o + iy) (I (l v)M1 - v exp G(xo -l) M.
y

* The final bracket is positive because the saddlepoint x0 lies to the left of the

leftmost pole of h(z) as given by (3.14) with k - 0.

4 Tables IV and V show results of our computation of the Neyman Type-A distri-

bution and of that arising from a negative-binomial primary distribution with

N - 5. The summations were halted when the ratio of the bound on the truncation

error, as given by (4.5), to the computed probability fell below 10 - 7  The

column headed "Exact" was computed by summing probabilities Pn calculated in

double precision from (1.17) with (2.30) and (2.20) respectively, and because

of round-off error in our computer, which even in double precision carries only

about sixteen decimal digits, the numerical integrations had to be carried out

In double precision as well. The numerical contour integration in these examples

yielded the tail probabilities to six significant figures with fewer than two

hundred steps.

In Figs. 4 and 5 we exhibit the cumulative distribution for the parameters

used in Tables IV and V: N - 5, C - 20 and N = 20, G - 5, respectively, and
P P

for M - 1, 3, 5, 10, and a, the mean N G - 100 remaining fixed. The figures il-P

- lustrate the manner in which the Neyman Type-A distribution (M - w) is approached

with increasing M. Figs. 6 and 7 exhibit the same cumulative distributions, but

forI 18, G - 72 and N - 72, C a 18, respectively, .he mean N C - 1296

22
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remaining" fixed. Comparison with Figs. 4 and 5 shows the approach of the Neyman

Type-A distribution to normalityoas the mean N G increases, as predicted by Teich
p

[2]. The distributions arising from the negative-binomial primary distribution

manifest no such progression toward normality.

The small circles in Figs. 4 to 7 mark the values of the cumulative distri-

bution of secondary electrons arising from incident light with a Lorentz spectral

density; these were computed by the residue series in Sec. III. For a few sets

of values the numerical integration method of this section was also carried out,

and results agreed. The tails of this distribution do not drop off to zero so

rapidly as for the approximating distribution calculated from the negative-binomial

primary distribution with the same number M of degrees of freedom, as specified

by (2.23). The latter corresponds to a spectral density that cuts off sharply

at a frequency deviation of the order of W = M/T from the central frequency of

the light; the Lorentz spectrum, on the other hand, has very long tails. Because

very large frequency deviations are much more prevalent in the latter, there are

more opportunities for large count deviations to be accumulated, and numbers n

much larger or much smaller than the mean E(n) are therefore more probable than

with primaries having a negative-binomial distribution.
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V. Saddlepoint Approximations

The principal contributions to the integrals in (1.9) and (1.10), after

. the contours have been deformed into the paths of steepest descent as discussed

in Sec. IV, come from the neighborhood of each saddlepoint zk; these saddlepoints

are the roots of (4.2). The integrals can then be approximated by

±(O)

Q± (O) +2 Re [27"(zk)0-exp [ly(Zk)I(I+Ck) ,  (5.1)

k=l

where % 0 represents the contribution of the branch of the path of steepest

descent passing through a saddlepoint on the real axis; z1, 22, ... , are saddle-

points lying above the real axis, and Ck is a complex correction term given by

1 5  2

Ck - j (K 4 - 3 '3

'M 2) m/ (m
K T (zk)/[y(2) (z)]m/2 T (m) ( dm(z)/dz, (5.2)
ii k ZkJ

In (5.1) we must take Re [y"(z)] > 0. Since the contributions of the complex

saddlepoints are usually much smaller than Qn it is often unnecessary to

include the correction Ck. Occasionally, however, Ck may have a strong influence

if the principal term that (l+Ck) multiplies has a phase close to ±w/2, so that

without the factor (I +Ck) its real part would be small. The saddlepoints

. k must be determined with high precision.

One method of approximating the on-axis term --±(0) is to use the counter-

part of (5.1-.2) [9],

%±(O) [2w( 2 )(x 0 )]-exp'(x 0)

( ) 5 2'.)1

8 [(2i(x) 2 -3 [(2)(x0)3

withX - forQ -() and xo + for Q+( 0 ) where x and x+ are the
0 0n -  0 
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real-axis saddlepoints defined in Sec. IV. This approximation is the more ac-

curate, the farther the value of n lies from the mean E(n) of the distribution.

For n near E(n) greater accuracy is achieved by utilizing the first two

" terms of a uniform asymptotic expansion [12, 25]. It is based on the modified

phase

(z) = ln h(z)-nlnz,

of which a saddlepoint x0 is the root of

h' (z) n
(z) z . (5.4)

This saddlepoint z = x can also be quickly computed by Newton's method. There
0

is a single such saddlepoint on the real axis, 0 < x0 < yo, where yo is the left-

most singularity of h(z) on the real axis. At the point x = X, ?(x) is minimum.

The contour of integration is displaced from the path of steepest descent

of the entire integrand so that it coincides with that of the function exp T(z),

which lies nearby. Then the first two terms of the uniform asymptotic expansion

[25] approximate the tail probabilities as

-(0) r

n >E(n):':. n > ~) < E(n): Qn-_(O) e! e r f c [-2T*(xo)]

: + (IxO -lV-[2T "(o) [-(x O) exp [()], (5.5)

in which primes indicate differentiation and

erfc u - (2n)- f exp (-t2/2) dt

is the error-function integral. *Corrections of higher order are listed in [25].

For n = E(n) -NG, x 1 and this approximation breaks down, but by Eq. (17)

of [25] we can write for n = E(n) n

25
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6+(0) 1 (5.6)

further terms are to be found in [25]. Thus for the Neyman Type-A distribution

and for the distribution of secondaries generated by primaries with a negative-

binomial distribution

1 2 2+(O)2[l+v) + -11 G (I+ 3V+ 2v -2
2 6'G(1+ v) +1 I

V = N /M. (5.8)
P

In Tables VI and VII we compare the results of the saddlepoint approxima-

tion with the exact values of the cumulative distribution; Table VI refers to

the Neyman Type-A distribution, Table VII to that arising from the negative-

binomial primary distribution. The column marked "UAE" was computed from

(5.5) or -- for n = N G " from (5.6). The "off-axis contribution" is the sum-P

mation in (5.1) over the four nearest complex saddlepoints z, z2, z3 and z4,

including the correction Ck, which amounted to a few percent. This contribution

is the larger, the smaller n; for n > E(n) it is hardly significant. The smaller

the gain G, the farther the complex saddlepoints lie from the real axis, and the

less they contribute to the total probability Qn or %. The column labeled

"crude SP" lists the value of Qn computed from (5.3), omitting the factor in

brackets. This is the most simply calculated of approximations to these prob-

abilities and is often adequate when n lies far in the tails of the distribution

N >> 1, G >> 1. It can be useful, for instance, in initial search for the level
p - +
n yiblding a particular value of Q or Qn' as in setting a bias level to attain

a pre-assigned false-alarm probability, or "size", in a hypothesis test.
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Conclusion

Three methods have been presented for calculating the cumulative distribu-

tion and the complementary distribution Q+ of the number n of secondaries

in a particle-multiplication process. They are appropriate when the number n and

its mean value E(n) - N G are so large that the recurrent computations of Sec. I
p

are infeasible. When the probability generating function h(z) has poles whose

locations and residues-can be determined, the residue series of Sec. III is the

most efficient for n E(n). For n< E(n) in these cases, and in general when

a residue expansion cannot be applied -- as for the negative-binomial primary dis-

tribution with M nonintegral, and for the Neyman Type-A distribution - the nu-

merical integration method of Sec. IV can be made as accurate as desired by using

sufficiently small steps. If approximations suffice, the saddlepoint methods of

Sec. V can be utilized, but one must in general include the contributions of

saddlepoints above and below the real axis in addition to that of the principal

saddlepoint on the real axis.
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Appendix A. Convergence of Residue Series

We expand the contour C+ in (3.2) into a rectangle with vertical sides at

x =I-o and with horizontal sides along the lines z - x± iy , where

YK M 2 (K+ J)/G,

C< x < 0. (A.1)

In the course of its expansion the contour crosses the line of poles at kr)

-K S k : K,and leaves behind it a little circle surrounding each pole.

The vertical sides of the rectangle contribute zero to the integral around

it because of the factor z-n in the integrand. The contributions from the little

circles are evaluated by the residue theorem as in Sec. 3, and we obtain for

(3.2)

q q (K) + R (A. 2)

with

S.(r)-n

r,n = E-Kr Ck (A.3)

R K - I+ + I-, (A.4)

where

+ f +iyK -n hr(z) dz (A.5)

I+ " z =1 27r

O-y K -

znhr(z) dA
'"" f z z I + (A.6)

amiYK

We want to bound the remainder term R..

. Along the upper side of the rectangle, z - x+iyK, <o < x < =9

e C (z-l) - exp[G(x-l)+27r(K+i)i] -e C -
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and

1-v
hr(Z) -(r 1 1 -vr  (A. 7)

1+v eG(xl "

r

Hence

if+ hr (x + yK)dx

I I+ I = 21T (x - 1 + 1yK ) (x + 'yK)n

(l-vr )  'Kd

_ _dx 
(.8

2 - ix-l+YK (X +yK2)n/2 (A.8)

and since

Ix- l+ yK I  YK

we find

l-2 r I y2 n/2 dIIl _ (x+ dx

- -n n-2
•21, YK -1

-ff12
l-Vlr ,y-,
2wr nyK (A. 9)

with Yn given by (3.7). Thus the remainder term is bounded by

IKI - I2ReI+l f 211+I

, £ ' (A.1O)

The same bound applies to the error incurred by cutting off the summation

in (3.16) at k - -K and k - K, with (1-v ) replaced by (l-v) M , as can easily

be shown by replacing hr(z) in (A.7) with h(z) in (3.13).

In this way we show that the partial sums in (A.3) converge to the prob-

abilities qr,n defined in (3.2) and summed in (3.1). The convergence of the

29
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series in (3.1) follows from Abel's criterion [26]. The series

0 ~c r (A.11)

r-l

converges to 1 by virtue of (2.8) with z - 1; f(l) 1 1 by (2.7). We need only

to show that for r sufficiently large, the qr,n form a monotonely decreasing

sequence in r for fixed n. Now by (2.20), (2.26), and (1.17) with v vr,

-=i, the quantities P defined by (2.8) and (2.9) arer,m

Pr,m (1 - vr) vrk(kG)m ekG/m! (A.12)

k-l

The eigenvalues Xr of (2.2) and hence the v defined in (2.8) are arranged in

descending order, and vr ) 0 as r - -. For some integer r0 , Vr< for all

r > rO, whereupon

(1 - )v k• (1-Vr )vr k r > r., *k -k 1,

and the probabilities (-vr)vk in (A.12) form a monotonely decreasing sequence.

The probabilities Pr m therefore, form such a sequence, and so do the prob-

abilities

qrn Pr,m
k-n

Since the series in (A.11) converges, and for r > r0 the qr,n form a monotonely

decreasing sequence, the series in (3.1) converges by Abel's criterion.

30



Appendix B. Residue Expansion

Dropping the subscript k, we write the terms in (3.15), .with .(3.13), as

1Res -d d I (-v) m(z - 0 z-n

(H- 1) - idM--L G(z)(z (B.1)
z=1C

with

F(r[,' HM -M
Fe(Z) z ) , G(z) = zi (B.2)

so that

ResM i dM r Fz

r=O dz dzr z=c

r-iM-1

=- (l-v)M E M-1-rrr  (B.3)

r=O

with

1 dT F(z) (B.4)
T ri dz r l

r 1- - G(z) (B.5)

*Starting with 0~ we put into F(z) in (B.2)

G(z- C) y,

so that

r M d L'
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Now we apply the method of Bell polynomials as in (1.11)- (1.15), except that

here

z

The k-th derivative of f(z) is

fk- (-1) (M) -(N-Ik)

z - g(O) M 1, (B.8)

and as in (1.12),

- (_1 )Mr_ f kH rk(B.9)

k-i

wit th Hr,k obeying the recurrent relation [12]

H 1 r-r~- H
r+l,k+l r+1 M,.. (rm! mk'

Hr,l Hrr 91 g/r! (B.10)

In which

k dk -k+1 B.l

Thus we obtain

k-i

In which the Hr~ are given by the recurrent relation
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H
-r+lk+l " - (r - ) -.(r + 2 - m)

s'i •m-k
r-k

r-c H
-,, 1 Hr-j,k

r+ -J (j +2) (B.13)
J,-0

with special values

,y 1 (3.14
"1 r, (r +1) r- (B.14)

For r in (B.5) we obtain

rr
I -d -~ _n I -

r -l T, (z (i r1 l

r

! sO r-s

B -0 s-OrI

-(-1) (B .15)

,, It is convenient to write

r  (-l)--c G (M-r-l) T (M) (B.16)

with

T (M) -()T r)Q4k

k-"
', T(M)

T 0) r M-1(.17)

whereupon, with

33
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r W, (~T .(l- n+s.-l) \ -) (B. 18)

B-0

we find from (B.3)

(1 V)(-1) r -rT (M)

G~ L.d -1-r r
r-O

M~ 1-1

- 2 aj G j r -l (B.19)

J -0

where the coefficients

0(M) (M) 0m-1(.1

are tabulated in Table II. A residue of this form is calculated for each pole

-~k and the result is the expression (3.16) for the probability Q
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I.

Table I

Performance of Residue Series for Qn (40 terms)

Lorentz spectral density, m = 4.4365821

N - 5, G 20 Np- 20, C 5

n Residue Exact Last U Residue Exact Last
series Increment series increment

20 0.940032 0.939034 2.20(-3) 20 0.991725 0.991717 6.38(-6)

40 0.842027 0.842012 2.40(-5) 40 0.928487 0.928483 3.60(-10).

60 0.710186 0.710182 3.45(-7) 60 0.785282 0.785280 2.03(-14)

80 0.567215 0.567213 6.71(-9) 80 0.602037 0.602037 1.14(-18)

100 0.433256 0.433255 1.25(-10) 100 0.428268 0.428268 6.43(-23)

U.,
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Table II

Coefficients 0 (M) in (3.16)

M 0 1 2 3 4 5 6 7 8 9 10 11

2 1 1

3 1 31
2

4 1 z-1 2 1
16

25 35 5
1 '2 1 --2 2

137 15 173 160 4 4

7 1 49 203 49 35 7 1
20" 45 T8 1'62

363 469 967 28 23 4 1
8 1 140 90 120 3 4

761 29531 801 1069 27 39 9
91 28 5040 80 80 2 2

10 1 7129 6515 4523 285 3013 75 145 5 1
252 1008 378 16 i4 12

11 I 7381 17733 84095 341693 8591 7513 605 44 11 1

252" 2520 6048 1512 288 240 24 32

83711 190553 103344293 1254429 242537 1901 10831 6
27720 25200 6531840 45360 6048 40 240 3 2
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Table III

Performance of Residue Series (3.16) for

Negative-Binomial Primary Distribution (M = 5)

n Single term Residue series Num Exact

N =5, G 20

20 0.932417 0.955457 4 0.955457

40 0.833080 0.873738 3 0.873737
60 0.705184 0.749536 2 0.749535

80 0.568492 0.601921 2 0.601920
100 0.439202 0.439582 2 0.439582
150 0.198436 0.198413 2 0.198413

200 0.0763843 0.0763844 2 0.0763845

N =20, Gn 5

P

20 0.983799 0.983798 1 0.983799
40 0.911155 0.911153 1 0.911155
60 0.775914 0.775912 1 0.775914
80 0.608256 0.608256 1 0.608258

100 0.443583 0.443581 1 0.443583
150 0.157956 0.157956 1 0.157956
200 0.0440489 0.0440489 1 0.0440489
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Table IV

Q: Neyman Type-A Distribution

Numerical Contour Integration

n Number of YO Result of Exact
steps integration

N "5, G 20
p

25 37 1.687 3.5527190(-2)
74 1.687 3.5523618(-2)

148 1.687 3.5523618(-2) 3.5523618(-2)

100 36 0.6551 0.52720529
71 0.6460 0.52698250

141 0.6415 0.52698245 0.52698245

175 36 0.5099 1-6.3492573(-2)71 0. 5029 1-6.3492302 (-2)
141 0.4993 1-6.3492302(-2) 1-6.3492302(-2)

N "20, G 5
p

25 41 2.856 9.3933963 (-5)
82 2.856 9.3933799(-5)

164 2.856 9.3933799(-5) 9.3933799(-5)

100 30 0.9178 0.51061370
60 0.9178 0.51045010

120 0.9178 0.51045007 0.51045007

175 25 0.7618 1-2.9833051(-3)
50 0.7618 1-2.9833045(-3)
99 0.7542 1-2.9833045(-3) 1-2.9833046(-3)

40



Table V

Distribution Generated by Negative-Binomial, = 5

Numerical Contour Integration

n Number of Y Result of Exact

steps integration

Np =5, G =20

25 30 1.3191 1-9.7678911(-2)
60 1.3191 1-9.7652467(-2)

119 1.3081 1-9.7652467(-2) 1-9.7652465(-2)

100 71 0.5602 .0.43963053
143 0.5563 0.43958206
285 0.5543 0.43958206 0.43958206

175 57 0.4193 0.12519049
115 0.4157 0.12518192
229 0.4157 0.12518192 0.12518192

N -20, G 5
p

25 22 1.3094 1-2.7957485(-2)
43 1.2796 1-2.7954584(-2)
84 1.2647 1-2.7954585(-2) 1-2.7954583(-2)

100 55 0.5571 0.44363275
112 0.5571 0.44358254
223 0.5571 0.44358254 0.44358255

175 47 0.4211 8.5479092(-2)
94 0.4211 8.5472726(-2)

187 0.4188 8.5472726(-2) 8.5472739(-2)
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Table VI

Saddlepoint Approximations

%:Neyman Type-A

N -5, G 20
p

ni UAE Off-axis Total Exact Crude S-P
contribution

25 3.14560(-2) 4.09137(-3) 3.55474(-2) 3.55236(-2) 3.289(-2)

50 0.130576 9.51063(-6) 0.130585 0.130600 0.1324

100 0.527499 .-5.51718(-4) 0.526947 0.526982 0.5103

150 0.857731 3.01480(-5) 0.857762 0.857777 0.8626

200 1-2.50472(-2) .9.23185(-7) 1-2.50463(-2) 1-2.50431.(-2) 1-2.478(-2)

N - 18, G -72
p

250 1.98051(-S). -1.71780(-6) 1.80873(-5) 1.80638(-5) 2.022(-5)

500 1.81082(-3) 1l.81503(-5) 1.82897(-3) 1.82849(-3) 1.826(-3)

750 2.98581(-2) 5.45979(-5) 2.99127(-2) 2.99100(-2) 2.986(-2)

1000 0.168343 -2.72697(-4) 0.168070 0.168064 0.1657

1500 0.752654 -8.41239(-5) 0.752570 0.752567 0.7648

2000 1-1.58622(-2) -2.85533(-7) 1-1.58625(-2) 1-1.58627(-2) 1-1.571(-2)
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Table VII

Saddlepoint approximations

u; Distribution Arising from Negative-Binomial, M 5

N -5, G -20
P

Sn UAE Off-axis Total Exact Crude S-P
contribution

25 8.87698(-i) 8.93627(-3) 9.77061(-2) 9.75652(-2) 9.260(-2)

50 0.228548 1.32791(-3) 0.229876 0.229878 0.2324

100 0.560734 -3.80191(-4) 0.560354 0.560418 0.6189

150 0.801492 2.28596(-5) 0.801515 0.801587 0.8156

" 200 1-7.64312(-2) -1.88311(-7) 1-7.64314(-2) 1-7.63845(-2) 1-7.375(-2)

N -18, G- 72

p

250 1.50326(-2) 1.09488(-5) .1.50435(-2) 1.50203(-2) 1.539(-2)

500 8.17995(-2) -4.29986(-4) 8.13695(-2) 8.13251(-2) 8.292(-2)

750 0.208630 4.65397(-4) 0.209096 0.209060 0.2101

1000 0.369655 -2.76864(-4) 0.369378 0.369373 0.3692

1500 0.672094 -3.98353(-5) 0.672054 0.672103 0.7066

2000 0.860206 -2.67366(-6) 0.860204 0.860256 0.8678
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FIGURE CAPTIONS

Fig. 1. Probability distributions (pnI of secondary electrons when the primary

electrons have negative-binomial distributions (solid lines) or arise from in-

cident light with a Lorentz spectral density (dashed lines); N = 2, G - 6.p

The curves are indexed by the number M of degrees of freedom. The curve marked

' represents the Neyman Type-A distribution.

Fig. 2. Probability distributions {pn of secondary electrons when the primary

electrons have negative-binomial distributions (solid lines) or arise from in-

cident light with a Lorentz spectral density (dashed lines); N = 6, G - 2.P

The curves are indexed by the number M of degrees of freedom. The curve marked

'' represents the Neyman Type-A distribution.

Fig. 3. Paths of steepest descent of the integrands in (1.7) and (1.8) when the

cumulative Neyman Type-A distribution is being calculated for N - G = 10. The
p

left-hand curve is for n = 75, the right-hand for n = 150. The small circles

indicate the saddlepoints of the integrand.

Fig. 4. Cumulative distributions of the number of secondary electrons when the

primary electrons have a negative-binomial distribution; N f 5, G - 20. TheP

curves are indexed by the number M of degrees of freedom, the curve marked ' '

representing the Neyman Type-A distribution. The small circles denote values

of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom.

Fig. 5. Cumulative distributions of the number of secondary electrons when the

primary electrons have a negative-binomial distribution; N = 20, G - 5. TheP

curves are indexed by the number M of degrees of freedom, the curve marked '='

representing the Neyman Type-A distribution. The small circles denote values

44



of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom..

Fig. 6. Cumulative distributions of the number of secondary electrons when the

primary electrons have a negative-binomial distribution; N - 18, G = 72. The
p

curves are indexed by the number H of degrees of freedom, the curve marked ,a t

representing the Neyman Type-A distribution. The small circles denote values

of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom.

Fig. 7. Cumulative distributions of the number of secondary electrons when the

primary electrons have a negative-binomial distribution; N = 72, G = 18. The
p

curves are indexed by the number H of degrees of freedom, the curve marked '~'

representing the Neyman Type-A distribution. The small circles denote values

of the cumulative distribution when the incident light has a Lorentz spectral

density with the same number of degrees of freedom.
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